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a b s t r a c t

Low-light image enhancement aims to recover normal-light images from the images captured under
very dim environments. Existing methods cannot well handle the noise, color bias and over-exposure
problem, and fail to ensure visual quality when lacking paired training data. To address these problems,
we propose a novel unsupervised low-light image enhancement network named LE-GAN, which is
based on generative adversarial networks and is trained with unpaired low/normal-light images.
Specifically, we design an illumination-aware attention module that enhances the feature extraction
of the network to address the problems of noise and color bias, as well as improve the visual quality.
We further propose a novel identity invariant loss to address the over-exposure problem to make the
network learn to enhance low-light images adaptively. Extensive experiments show that the proposed
method can achieve promising results. Furthermore, we collect a large-scale low-light dataset named
Paired Normal/Lowlight Images (PNLI). It consists of 2,000 pairs of low/normal-light images captured
in various real-world scenes, which can provide the research community with a high-quality dataset
to advance the development of this field.

© 2021 Published by Elsevier B.V.
1. Introduction

Compared with normal-light images, quality degradation of
ow-light images captured under terrible lighting conditions is
erious due to inevitable environmental or technical constraints,
eading to unpleasant visual perception including details degra-
ation, color distortion, and severe noise. These phenomena have
significant impact on the performance of advanced downstream
isual tasks, such as image classification, object detection, seman-
ic segmentation [1–4], etc. To mitigate the degradation of image
uality, low-light image enhancement has become an important
opic in the low-level image processing community to effectively
mprove visual quality and restore image details.

In the early research on low-light image enhancement, tradi-
ional methods [5,6] generally use hand-crafted features as input
nd utilize optimization strategy and rules to improve image
uality, which are greatly dependent on the precision of their
ssumption of hand-crafted priors. Recently, deep learning meth-
ds have become more and more popular in the computer vision
ommunity, and have achieved unprecedented improvements in
ow-light enhancement. Many researchers [7,8] train deep mod-
ls in a supervised manner with low/normal-light image pairs.

∗ Corresponding author.
E-mail address: fuying@bit.edu.cn (Y. Fu).
ttps://doi.org/10.1016/j.knosys.2021.108010
950-7051/© 2021 Published by Elsevier B.V.
However, these methods usually do not generalize well on real-
world images because their performance is highly affected by
the paired data of training sets. Besides, it is also very difficult
to simultaneously capture low-light and ground truth images of
the same visual scenes. Another line of methods [9,10] attempts
to address the low-light enhancement task in an unsupervised
manner. Among these methods, EnlightenGAN [10] is the first un-
supervised approach to solve the low-light enhancement problem
using a global–local discriminator structure with well-designed
losses. Zero-DCE [9] proposed a deep curve estimation network
to treat this problem as a task of image-specific curve estimation.
Nevertheless, they inevitably have severe color deviation and
artifacts in some cases.

To address the above issues, in this paper, we present a low-
light enhancement generative adversarial network (LE-GAN) us-
ing a cyclic architecture to transform low-light images into the
corresponding normal-light ones in an unsupervised way without
relying on exactly paired images. To improve the visual quality
of recovered images, we propose an illumination-aware mod-
ule to utilize contextual and global information. Specifically, it
consists of a spatial-illumination attention branch and a global-
illumination attention branch. The spatial-illumination attention
module encodes a wider range of contextual information to dig
more discriminative spatial features, which helps the network
generate images with better visual quality and avoid the nega-
tive effects of noise. The global-illumination attention module is

https://doi.org/10.1016/j.knosys.2021.108010
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.108010&domain=pdf
mailto:fuying@bit.edu.cn
https://doi.org/10.1016/j.knosys.2021.108010
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Fig. 1. Representative visual examples by enhancing typical low-light images from our PNLI dataset using LE-GAN. The proposed LE-GAN achieves visually pleasing
results in both dark and regions where the brightness changes drastically.
designed to learn the global correlation along feature channels,
which improves the correction of colors and eliminates color bias
in low-light images. Besides, as shown in Fig. 1, it is a challenging
issue of enhancing the regions with relatively high brightness.
Previous works [11–13] tend to improve the overall brightness of
the image, which will easily cause over-exposure in these regions
and result in unsatisfactory visual feeling. To address the above
issues, we propose the identity invariant loss, which imposes an
identity constraint on the output to focus on learning to enhance
low-light images adaptively.

In addition, to better improve and validate low-light enhance-
ent methods, we collect a large-scale low-light dataset un-
er real-world scenarios named Paired Normal/Low-light Images

(PNLI). It consists of 2,000 high-quality image pairs with
6720 × 4480 resolution, which are taken in various indoor
and outdoor scenes. Our PNLI has larger scale of the dataset,
better scene diversity, and higher image resolution over existing
datasets. We believe that the dataset can greatly advance the
development of this field. Extensive experiments on our PNLI
dataset as well as existing datasets [8,14] show that our method
outperforms state-of-the-arts and has better generalization abil-
ity than other methods.

In summary, the main contributions of our paper are summa-
rized as follows:

• We present a novel unsupervised low-light enhancement
method named LE-GAN, which outperforms state-of-the-art
competitors.

• We propose an illumination-aware attention module and an
identity invariant loss to enhance network feature extrac-
tion ability and solve the over-exposure problem, aiming to
further improve the visual quality of enhanced results.

• We build a new large-scale dataset consisting of high-quality
low/normal-light image pairs captured in complex and di-
verse scenes from the real world. To the best of our knowl-
edge, the PNLI dataset is the currently largest real-world
paired images dataset for low-light image enhancement.

2. Related work

In this section, we briefly review the related research in low-
light image enhancement, which includes traditional methods
and deep learning methods.

2.1. Traditional methods

Histogram equalization (HE) [15] and Retinex theory [16,17]
are the most primarily and widely used methods in low-light
image enhancement. The primary HE method often causes loss of
contextual details, poor color restoration, and noise disturbance.
Thus, many algorithms have been proposed to solve these is-

sues, e.g., adaptive histogram equalization [18], contrast-limited

2

adaptive histogram equalization [19], dualistic sub-image his-
togram equalization method [20], and brightness bi-histogram
equalization method [21]. However, these methods fail to solve
the color bias in low-light enhancement completely. Retinex-
based methods [5,22] decompose images into reflectance and
illumination and then enhance images by manipulating illumi-
nation. Celik et al. [23] and Lee et al. [24] utilize the relationship
between adjacent pixels and large gray-level differences to adjust
brightness at local levels. Land and Jobson propose Retinex [16]
and multi-scale Retinex model [25] to formulate the light en-
hancement as an illumination estimation problem. More recently,
Wang et al. [26] propose an enhancement algorithm for non-
uniform illumination images, utilizing a bi-log transformation
to make a balance between details and naturalness. Based on
the previous investigation of the logarithmic transformation, Fu
et al. [22] propose a weighted variational model to estimate both
the reflectance and the illumination from an observed image
with imposed regularization terms. Nevertheless, these methods
cannot always achieve satisfying performance and even generate
additional artifacts.

2.2. Deep learning methods

Recently, deep learning has achieved great success in image
restoration/enhancement tasks [27–31]. In this section, we intro-
duce some deep learning low-light image enhancement meth-
ods, which can be divided into fully supervised methods and
unsupervised methods.

Fully supervised methods. Most existing works for low-light
image enhancement rely on paired images for the image enhance-
ment task [32–35]. Chen et al. [36] use an end-to-end network to
obtain enhanced images from extremely low-light raw images.
Kin et al. [37] introduce a stacked auto-encoder to learn low-
light enhancement with denoising. In addition, some fully super-
vised methods incorporate the traditional Retinex theory-based
methods with CNNs to obtain enhanced images. Retinex-Net [8]
uses a decomposition network to decompose the input images
into reflectance and illumination, and then an encoder–decoder
network is used to adjust the illumination. Pineda et al. [38] ex-
tend Retinex-Net by incorporating another reflectance restoration
network to improve the reflectance. All of these methods are
highly dependent on the dataset and cannot work in real-world
scenarios where no paired data exist.

Unsupervised methods. Benefit from the development of un-
supervised learning methods [11,12] in image processing, many
unsupervised methods have been proposed to address the task
of low-light enhancement. Jiang et al. [10] propose Enlighten-
GAN, which is a one-way GAN using global–local discriminator
structure with a well-designed self feature preserving loss. Guo
et al. [9] present a method named Zero-Reference Deep Curve



Y. Fu, Y. Hong, L. Chen et al. Knowledge-Based Systems 240 (2022) 108010

E
a
A
q
h
i
m
h
i

3

t
I
o
m
f

3

f

Fig. 2. The framework of LE-GAN. The model consists of two generative adversarial networks, GX→Y and GY→X that form a cyclic network.
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stimation (Zero-DCE), which formulates low-light enhancement
s a task of image-specific curve estimation with a deep network.
lthough these methods solve the problem of unpaired data, the
uality of the enhanced images is limited, e.g., these methods en-
ance the holistic brightness of the input but cause over-exposure
n the regions with relatively high brightness. Besides, these
ethods cannot deal with the noise well simultaneously, which
as a significant impact on the visual quality of the enhanced
mages.

. Method

As illustrated in Fig. 2, our LE-GAN is designed to resolve
he low-light image enhancement issue in an unsupervised way.
n this section, we first introduce the network architectures of
ur LE-GAN. Then, we introduce our illumination-aware attention
odule, Finally, the identify loss function as well as other loss

unctions are described.

.1. Network architectures

Our LE-GAN consists of two generative adversarial networks
orming a cycle network [13]. GX→Y takes the low-light image
X as input and then outputs a normal-light image Ŷ . GY→X

generates the inverse low-light image X̂
′

from the corresponding
normal-light image Ŷ . DY→X is used to distinguish between input
image X and the generated low-light images X̂ and DX→Y aims to
discriminate between the normal-light image Y and the enhanced
result Ŷ . Besides, Xn and Yl are selected from Normal-Light Input
and Low-Light Input, respectively, and they are served as the input
of the generator for the calculation of the identity invariant loss.
More details can be found in Section 3.3.

We adopt a U-Net [39] style network with a spatial-illumina-
tion attention branch and a global-illumination attention branch
as the generators. Firstly, the encoder consisting of several Resnet-
D blocks extracts features and maps the input low-light images
to high-dimensional representations. Then, these intermediate
features are fed into two attention branches respectively. After
that, the output feature maps are elementally added to obtain
the representation of the enhanced result. At last, the decoder is
composed of several bilinear interpolation operations and con-
volution(BIC) layers, aiming to reconstruct the enhanced normal-

light image from the mapped features. Besides, skip connections i

3

are utilized between the encoder layers and the corresponding
decoder layers to make full use of hierarchical multi-scale infor-
mation from both low-level features and high-level features. For
the discriminators, we use the commonly used VGG architecture
to identify real and fake images.

3.2. Illumination-aware attention module

To handle the noise, low brightness, and color bias simul-
taneously, we propose the illumination-aware attention module
consisting of a spatial-illumination attention branch and a global
illumination attention branch is shown in Fig. 3.

Spatial-illumination attention branch. In a normal-light image,
the illumination of pixels may change dramatically in a small
neighborhood, e.g., two pixels are next to each other and one is
in the shadow while the other one is in the light. The features of
regions to which the two pixels belong should be quite different
in the convolutional neural network. However, due to the nature
of the convolution kernel, its receptive field is usually small
and limited to the local area. It often ignores the contextual
information and makes features of adjacent pixels similar to each
other. This leads to inaccurate brightness estimation and noise
suppression, which makes low-light enhancement results unsat-
isfying. Therefore, we add spatial-illumination attention branch
to our generator, which uses non-local attention, and can encode
a wider range of contextual information into local features, i.e.,
the features of all pixels in the shadow together and making
them more discriminative and different from features of neighbor
pixels in the light.

As shown in Fig. 3, the spatial-illumination attention branch
first takes the encoded representation as input and generates
three intermediate features, i.e., f(x), g(x), and h(x). Then, We
alculate the dot products of f(x) with g(x) and apply the soft-
ax function to obtain the weights on h(x). Finally, we further
alculate the dot products of weights with all h(x) to attain the
patial-illumination feature map.

lobal-illumination attention branch. In high-level features,
ach channel can be regarded as a kind of semantic response
hat is relevant to illumination estimation and final normal-light
mage generation. Considering different semantic responses con-
ribute to the final estimation differently, the less relevant or

rrelevant semantic responses may introduce noise and lead to
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Fig. 3. The architecture of the proposed generator, which consists of an encoder–decoder module and an illumination-aware attention module. In the encoder block,
the Resnet-D (red arrows) blocks are used to downsample feature maps; while in the decoder block, the Bilinear Interpolation operations and Convolution (BIC, blue
arrows) layers are used to upsample the feature maps.
color bias. From the view of low-level vision, different chan-
nels may represent different global information, thus we be-
lieve that channel attention is helpful to utilize color information
adaptively. Therefore, we propose a global-illumination attention
branch that allows the network to learn to use global informa-
tion to selectively emphasize informative semantic responses and
suppress less useful ones. Such a global-illumination attention
branch can help the network achieve better color estimation and
noise suppression, and make the enhanced images realistic.

As illustrated in Fig. 3, the global-illumination attention branch
is built upon a transformation, which maps the encoded features
into the global-illumination attention feature maps. The input is
first processed by a global average pooling in spatial dimensions.
Then features encoded in channel dimension are passed into two
fully connected layers for compression and reconstruction. After
that, the reweighting attention map is multiplied by each channel
of the original input of the branch. At last, feature maps generated
by the spatial-illumination and the global-illumination attention
branch are elementally added as the intermediate feature that
passes into the decoder.

3.3. Loss functions

In this subsection, we introduce the loss functions of our
method. We first propose a novel identify invariant loss to solve
the over-exposure problem in the low-light enhancement task.
Besides, we describe the adversarial loss and the cycle consis-
tency loss for the training.

Identity invariant loss. Over-exposure problem leads to loss
of image details, and it usually occurs in the relatively bright
region of low-light images where enhancement methods tend
to improve the overall brightness. These bright regions in low-
light images account for a small proportion of pixels and have
different brightness distributions from most of the pixels in the
low-light image, which makes them hard samples. To solve this
problem, we randomly input bright normal-light images to give
the model more samples of the bright region and propose an
identity invariant loss, imposing an identity constraint on the
output, avoiding over-enhancement for the bright region. In this
way, the model is able to learn to identify the bright regions and
4

enhance them adaptively to avoid over-exposure. The identity
invariant loss can be defined as:

LIdentity = LIdentityl + LIdentityn , (1)

where

LIdentityl = |Yl − GY→X(Y )| , (2)

and

LIdentityn = |Xn − GX→Y(X)| . (3)

Adversarial loss. The adversarial loss is used to encourage the
distribution of the enhanced image to be close to the normal-light
image, and can be described as:

LGX→Y = − log (1 − DX→Y (GX→Y(X))) . (4)

And the discriminative DX→Y is defined as:

LDX→Y = log (DX→Y(Xn)) + log (1 − DX→Y (GX→Y(X))) . (5)

Cycle consistency loss. Inspired by CycleGAN [13], to make
different regions of the images generated by the two generators
correspond to each other, we define our consistency loss as:

Lcycx = |X − X̂ ′
|, where X̂ ′

= GY→X (GX→Y(X)) . (6)

Thus, we can obtain the final cyclic consistency loss as:

Lcycle = Lcycx + Lcycy . (7)

The total loss for GX→Y and GY→X is a combination of all these
losses and can be expressed as:

LsumG = LGX→Y + LGY→X + λ1LIdentity + λ2Lcycle, (8)

where λ1 and λ2 are the loss weights and we empirically set them
to 5 and 10 respectively. The overall loss of the discriminators is:

LsumD = LDX→Y + LGY→X . (9)

4. Paired normal/low-light images dataset

Deep learning methods for low-light image enhancement
based on the synthetic dataset [7,8,37,40] have been studied
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Fig. 4. Several representative examples for low/normal-light images in PNLI dataset, LOL dataset, SYN dataset and EnlightenGAN dataset. Objects and scenes captured
in our PNLI dataset are more diverse, abundant and superior.
Table 1
Comparison of attributes between our PNLI dataset and the other representative datasets. SYN denotes SYNthesized dataset,
EnlightenGAN denotes the dataset used in EnlightenGAN, LOL denotes LOw-Light dataset.

Dataset Scale Paired/Unpaired Size

Synthetic SYN 1,000 image pairs Paired 384 × 384

Real-scenes
EnlightenGAN 914 low-light images1,016 normal-light images Unpaired 600 × 400
LOL 500 image pairs Paired 600 × 400
Ours (PNLI) 2,000 image pairs Paired 6720 × 4480
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for several years. However, the synthesized images of exist-
ing datasets are usually not photo-realistic, so that models de-
signed and trained on these datasets perform poorly in real-world
low-light images. Several real-world datasets are proposed re-
cently [8,10]. Nonetheless, the data is unpaired in [10], and the
LOL dataset [8] has a small scale with limited scenes. Considering
the defects of existing datasets, we propose a new dataset named
Paired Normal/Low-light Images (PNLI), which contains 2,000
ow/normal-light image pairs. Compared to previous datasets, our
ataset has larger scale and richer scenes. Besides, the images in
ur dataset have a higher resolution.
We use Canon EOS 5D Mark IV to capture the data. The

esolution of captured images is set to 6720 × 4480. To capture
ow/normal-light image pairs, the camera was mounted on a
turdy tripod and controlled remotely via a mobile APP. The
amera was not touched between the capture process of normal-
ight and low-light images to avoid vibration. For each pair, we
irst take the normal-light image. Then the low-light image is
aptured by changing the shutter, exposure time, and ISO to
imulate low-light conditions.
We capture the images in a variety of scenes, e.g., muse-

ms, parks, streets, landscapes, vehicles, plants, buildings, sym-
ols, and furniture. Among these images, the quantity of outdoor
mages is almost three times bigger than that of indoor im-
ges. It is noteworthy that all the scenes in our dataset are
tatic to ensure that the content of the low-light image and its
round-truth are identical. Some representative visual examples
f PNLI (Paired Normal/Low-light Images) dataset, LOL (LOw-
ight) dataset [8], SYN (SYNthesized) dataset [8], and unpaired
ataset used in EnlightenGAN [10] are shown in Fig. 4. To the
est of our knowledge, PNLI is the largest real-world paired
ow/normal-light image dataset for low-light enhancement and
ill be publicly available. Table 1 shows the comparison of the
5

mportant attribute (i.e., scale, paired or not, image size) be-
ween our PNLI and other representative datasets. Compared to
ther paired normal/low-light image datasets, PNLI is far more
iverse, comprehensive, and challenging. It exhibits the following
istinctive characteristics and superiority:

• It contains 2,000 image pairs, which is four times the size of
the LOL dataset.

• Different from the existing real scenes dataset, i.e., LOL,
there are no repeated scenes in our PNLI dataset, which is
more abundant and superior than LOL. (There are many very
similar scenes with little difference in the LOL dataset, as
shown in Fig. 4)

• All images in PNLI are collected from considerably more
real scenes, which contain both indoor and outdoor scenes.
In addition, the object categories in images are rich and
common.

• Excellent visual quality and clarity, which might help in
learning pixel-level contextual information.

• The darkness levels of low-light images in PNLI are rich,
and it can truly restore various situations where the actual
image brightness is missing due to insufficient ambient light
or human operation mistakes. Therefore, it can effectively
verify the stability and robustness of our proposed method.

. Experimental results

In this section, we first introduce the implementation de-
ails of our model. Then, we describe the datasets and their
sage for training and testing of all methods, and the metrics
or quantitative evaluation. Next, we compare our method with
everal state-of-the-art methods of various types. In addition,
he effectiveness of our method is evaluated on two real-world
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Fig. 5. Visual comparison with other different methods on the LOL dataset [8]. The red boxes represent the saliency regions of the results.
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datasets, i.e., PNLI and LOL; a synthesized dataset [8], i.e., SYN;
and ExDark [14] dataset containing only low-light images. Finally,
we further investigate the effect of our proposed network module
and loss function through an ablation study.

5.1. Implementation details

We perform the center crop of size 256 × 256 to train the
model up to 4,000 epochs with Adam optimizer. The learning
rate is set to 1e-4, the hyper-parameters β1, β2, ε, λ1, and λ2
re set to 0.9, 0.999, 1e-8, 5, and 10, respectively. GFLOPs and
arameters of the model are 62.66Mb and 7.91Gb. The training
ime and converging time of our method are 25.6 h and 10.9 h
on the PNLI dataset) on 3 NVIDIA 3090ti GPUs, respectively. And
ts testing time on a 600 × 400 image is about 8.43 ms.

.2. Datasets and metrics

LOL dataset has 500 image pairs, and we randomly select
85 pairs for training and 15 pairs for testing. SYN dataset has
,000 image pairs, and we randomly select 950 pairs for training
nd 50 pairs for testing. As for the PNLI dataset with 2,000
mage pairs, we randomly select 1,700 pairs for training and
00 pairs for testing. We compare supervised and unsupervised
ethods on the same dataset. For the supervised methods, we
irectly use the paired data to train the model. For the unsuper-
ised methods, to ensure that the model cannot see the paired
ow-light/normal-light images in one iteration, we independently
huffle the low-light images (e.g., 1700 images in the training set
f PNLI) and the normal-light images (e.g., 1700 images in the
raining set of PNLI). The paired dataset is treated as an unpaired
ataset for unsupervised methods for a fair comparison. Two
mage quality metrics are used including Peak Signal-to-Noise
atio (PSNR) and Structural Similarity (SSIM).

.3. Comparison with state-of-the-art methods

We compare our methods with several traditional methods,
.e., LDR [24], LIME [5], SRIE [22] and SRLLIME [6], and several
6

tate-of-the-art deep learning methods, i.e., GLADNet [7], Retinex-
et [8], EnlightenGAN [10], and Zero-DCE [9]. All these methods
re retrained using the official codes on LOL, SYN, and our PNLI
ataset. The experimental results are reported both quantitatively
nd qualitatively.

.3.1. Qualitative comparisons
We first compare the visual quality of our LE-GAN with other

ethods. The results are shown in Figs. 5 and 6. It can be seen
hat the traditional methods get the worst results, especially
n the LOL dataset. Compared to the deep learning methods,
hese methods can only increase the brightness of the image,
ut the color saturation of the results is still very low. The deep
earning methods can perform low-light enhancement better, but
hey still suffer from noise and color bias. Besides, we can easily
bserve that there are some regions of the results generated by
he compared methods with relative brightness that are over-
xposed after enhancement. In contrast, our method performs the
est on all conditions with nearly no artifacts and generates the
ost realistic normal-light images.

.3.2. Quantitative comparisons
We also provide quantitative comparisons of our methods

ith state-of-the-art methods. We report the PSNR and SSIM
esults of each approach on the PNLI, LOL, and SYN datasets. As
hown in Table 2, our method outperforms the other state-of-the-
rt methods significantly. It is worth noting that our method is
nsupervised while it still outperforms current state-of-the-art
ully supervised methods, including GLADNet and Retinex-Net.
he results strongly prove the effectiveness of our method.
To prove that the improvement of our method does not bene-

it from more complex models, we do the complexity analysis.
ur method has similar GFLOPs to RetinexNet and Enlightten-
AN, and the GFLOPs of GLADNet is larger than that of ours.
hen it comes to model complexity, though the amount of
odel parameters of our methods is larger than that of GLADNet,
etinexNet, and Zero-DCE. The PSNR of our method outperforms
ther methods by a large margin of 3-−5 dB on the PNLI dataset.
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Fig. 6. Visual comparison with other different methods on the SYN dataset [8]. The red boxes represent the saliency regions of the results.
Fig. 7. Visual comparison with other different methods on ExDARK, SYN, and LOL in a zero-shot manner respectively. Our method and other representative deep
learning methods are only trained on our PNLI dataset. Our method generates the most visually pleasing results across the three datasets. Please zoom in to see the
details.
5.3.3. Generalization ability comparison
Generalization ability is of vital importance in evaluating deep

earning algorithms. In this section, we conduct extensive ex-
eriments to compare the generalization ability between our
ethods and state-of-the-art methods. As shown in Table 3, we

rain models on our PNLI dataset and then test them on LOL and
YN datasets (the left part) and train models on LOL and SYN
7

datasets and then test them on PNLI (the right part). Our method
obtains the best performance among all the methods, which
illustrates that our trained model is robust and can generalize to
more data.

We also provide qualitative results on LOL, SYN, and ExDARK
datasets to show the visual quality of these methods trained
on PNLI. Since the ExDARK dataset does not have ground-truth,
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Fig. 8. Visual comparison with other representative unsupervised low-light image enhancement methods (i.e., EnlightenGAN [10] and Zero-DCE [9]) on PNLI testing
et. The red dotted boxes represent the saliency regions of the results.
e only show the visual comparisons without the reference. As
hown in Fig. 7, the results generated by other deep learning
ethods suffer from low color saturation and color bias, espe-
ially the predictions of Retinex-Net and EnlightenGAN. However,
ur method can generate visually satisfying results.
In addition, we conduct experiments of domain adaptation

o further show the generalization ability of our method. For
his experiment, we compare our method with the other two
nsupervised methods, i.e., EnlightenGAN and Zero-DCE, using
ormal-light data in PNLI and low-light data in LOL as training
et and testing the trained models on the PNLI’s testing set. In this
ase, the algorithm needs not only to perform low-light enhance-
ent using unpaired data but also to deal with the domain gap of
ontent between the source domain and the target domain. The
isual comparisons are shown in Fig. 8, and the results generated
y our method achieve the best visual quality with less color
ias compared to EnlightenGAN and Zero-DCE. It can be observed
hat our method can not only solve the unpaired low-light en-
ancement but also handle the domain adaptation well. Overall,
he above experiments can strongly prove the effectiveness and
eneralization ability of our method.

.4. Ablation study

In this section, we conduct an ablation study to further in-
estigate the proposed LE-GAN, including the spatial-illumination
ttention branch, global-illumination attention branch, and the
dentity invariant loss.

The importance of the illumination attention branches and
dentity invariant loss. The quantitative results are demon-
trated in Table 4. Compared to the complete method, the PSNR
nd SSIM significantly drop without the spatial-illumination at-
ention branch. The second important module is the global-
llumination attention branch. The identity invariant loss has the
east impact on the quantitative metrics, but it still brings about a
dB PSNR drop without this loss. The quantitative results validate
he effectiveness of the spatial-illumination attention branch,
lobal-illumination attention branch and identity invariant loss.
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Table 2
Quantitative results on the PNLI, LOL, and SYN datasets.
Methods PNLI LOL SYN

PSNR SSIM PSNR SSIM PSNR SSIM

LDR [24] 15.480 0.632 15.484 0.634 13.187 0.591
LIME [5] 13.625 0.412 15.414 0.433 14.318 0.554
SRLLIME [6] 15.953 0.703 13.629 0.706 16.873 0.714
SRIE [22] 16.416 0.617 17.440 0.649 14.478 0.639
GLADNet [7] 21.127 0.773 20.314 0.739 16.761 0.797
Retinex-Net [8] 18.857 0.743 17.780 0.425 16.286 0.779
EnlightenGAN [10] 22.066 0.830 18.850 0.736 16.073 0.827
Zero-DCE [9] 19.083 0.772 16.818 0.741 15.600 0.796
Ours 24.176 0.876 22.449 0.886 24.014 0.899

The superiority of our attention-based methods. In Table 5,
we replace our spatial illumination and global illumination at-
tention branches with residual blocks in Gx→y and Gy→x and
we denote this model as ours w/o attention. And we also re-
place the spatial-illumination and global-illumination attention
branches with the attention components of DuATM [41], Bilinear
CNN [42], and SE-Block [43,44], respectively (denoted as Ours-
DuATM, Ours-Bilinear CNN and Ours-SE). As shown in Table 5,
the PSNR and SSIM of ours are the highest of all methods, which
means that our illumination-aware attention method has more
advantages in obtaining the global information of the low-light
images. SE-Blocks focuses on the correlation between channels of
feature maps and has weaker ability to obtain global information.
Please note that all the comparison methods have similar settings
(e.g., model size) to ensure fairness.

To further illustrate the impact of the two attention branches
and the identity invariant loss on the visual quality, we also
provide qualitative results in Fig. 9. We can observe that the two
attention branches can significantly improve the visual quality by
reducing noise and color bias. Additionally, benefiting from the
identify invariant loss, the over-exposure problem can be solved
well obviously. The visual results further prove the effectiveness

of the proposed modules.
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n

Fig. 9. Visual comparison from the ablation study of our method. Not only the indoor scenes but the outdoor scenes are illustrated. Red and blue boxes represent
the key details of the images, and our method performs well in these areas. From left to right, (a) Input. (b) Normal. (c) Ours. (d) w/o Spatial-illumination attention.
(e) w/o Global-illumination attention. (f) w/o Identity Invariant Loss.
Table 3
Experimental results about generalization ability.
Methods Training Set Testing Set PSNR SSIM Training Set Testing Set PSNR SSIM

GLADNet [7] PNLI LOL 18.637 0.792 LOL PNLI 16.912 0.757
SYN 17.035 0.716 SYN 17.125 0.730

Retinex-Net [8] PNLI LOL 16.035 0.690 LOL PNLI 16.757 0.764
SYN 18.293 0.800 SYN 17.884 0.767

EnlightenGAN [10] PNLI LOL 18.220 0.677 LOL PNLI 18.117 0.692
SYN 18.707 0.802 SYN 17.022 0.646

Zero-DCE [9] PNLI LOL 14.213 0.611 LOL PNLI 14.332 0.733
SYN 17.350 0.847 SYN 17.249 0.784

Ours PNLI LOL 21.523 0.812 LOL PNLI 20.410 0.815
SYN 20.011 0.850 SYN 17.929 0.798
i
S

Table 4
Ablation study on the PNLI dataset.
Spatial-illumination
Attention branch

Global-illumination
Attention branch

Identity
Invariant
Loss

PSNR SSIM

×
√ √

19.677 0.630
√

×
√

21.825 0.735
√ √

× 22.385 0.724
√ √ √

24.176 0.876

Table 5
The comparison of attention components.
Method PSNR SSIM

Ours w/o attention 19.291 0.627
Ours-DuATM 19.828 0.817
Ours-Bilinear CNN 21.459 0.820
Ours-SE 22.348 0.839
Ours 24.176 0.876

6. Conclusion

We design a novel unsupervised low-light image enhancement
etwork named LE-GAN. In our model, the illumination-aware
9

attention module consisting of a spatial-illumination attention
branch and a global-illumination attention branch is proposed to
solve the low brightness with the reduction of noise and color
bias. Meanwhile, a novel identity invariant loss is introduced
to address the over-exposure problem. Besides, we also build
the currently largest real-world paired low-light/normal-light im-
age benchmark dataset for the low-light image enhancement,
which consists of large amounts of high-quality images collected
from different real-world scenes under different light conditions.
The qualitative and quantitative experimental results on various
low-light datasets show that our approach outperforms the state-
of-the-art approaches. Furthermore, we demonstrate that LE-GAN
can obtain preferable generalization ability on several datasets
and yield more visually pleasing enhanced images.
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